## Learners Resource Package

## Engineering Drawing Interpretation 2 NM44/2



Product Code: 2924
Introduction
What you will need for this module ..... 2
Module organiser ..... 3
First published in Oct ober,1998 byTAFE Manufacturing \&Educational ServicesPO Box 218 Bankstown NSW2200
Module sections
2nd Edition November 2000
$3^{\text {rd }}$ EditionJ uly 2004This work is copyright. Any inquiries about the use of this materialshould be directed to the publisher.
© TAFINewSouth Wales Technical and Further Education Commission2004

Permission to use certain illustrations fromthe publication "Pen Pencil \& Paper" written and illustrated by Raymond D Bell and Mechanical Draving Exercises, Engineering Graphics Book 2 compiled by Dan Quigley has been granted by:
Department of Education Victoria

ENGINEERING DRAWNG INIERPRETATION 2
NM44/2

## Section 1:Pictorial Views

| PURPOSE |
| :--- |
| In this section we will extend the work completed in MECO 76 Engineering |
| Drawing Interpretation on isomet ric and oblique projection. You will be |
| required to sketch shapes and then drawthemaccurately using drawing |
| equipment. |

## Obiectives

At the end of this section you should be able to:
$\square$ Construct detailed pictorial viens from two and three viewthird angle orthogonal drawings of simple engineering objects.

## Advice on section completion

The work may need to be completed inside and outside the classroom if the majority of exercises are attempted.

## Projection - Methods of drawing

An engineering drawing must ideally showt he true shape of an object as well as all necessary sizes to allowit to be made and interpreted correctly.

A pictorial drawing ( Axonomet ric, oblique or perspective) may give an instant impression of an object and its use, but, be ineffective in shoving correct proportions and dimensions as an orthogonal drawing would.

| Distinctive features | Projection |  | Application |
| :---: | :---: | :---: | :---: |
|  | Generic | Particular |  |
| Paralle lines of sight | Orthogonal | Third angle (preferred) First angle | Generally a multiview drawing |
| (Orthogonal) | Axanometric | Isometric <br> Dimetric <br> Trimetric |  |
|  | Oblique | Cavalier <br> Cabinet <br> General | Single view |
| Converging | Perspective | One-point (paralle) | 'Pictorial' drawings |
| Line of sight |  | Two point <br> (angular) <br> Three point <br> (oblique) |  |

## Pictorial drawings

The table above has introduced a number of terms, or names that you might not befamiliar with.
Orthogonal, Isometric, Oblique and Perspect ive are probably words that you are already familiar with.

Why have all the listed variations? No system where we try to drawa three dimensional object on a flat sheet of paper, is perfect.

Consider the isometric drawing of a block with a 45E chanfer on each corner. These chamfers come out as vertical or horizontal lines. On two corners, the lines are dead in line with the lines showing each extremity of the block On a simple object like this, our eyes are not confused, and it does not create much of a problem However, on more complex objects this can not be overlooked, and the object needs to be viewed from a different angle to avoid misinterpret ing the shape of the job.


## Pictorial viens

## Axononmetric drawing

There are three basic met hods of Axonomet ric drawing:

- Isometric

Where the three angles bet ween the three principle axes of the object formequal angles of 20․

- Dimetric
- Trimetric

Both of these methods use angles and scaled lengths which make themmore difficult to draw.

The following three drawings showt he differences.


Dimetric and Trimet ric drawings are simply variations of Isometric drawings to give clarity. In drawing work the following angles are usually used.

Isometric uses
angles of 30응 30응
Diametric uses - angles of 70 and 4ํ 30'

Trimet ric gives the draftsperson some lat it ude in that the angles can be arranged to give the best interpretation and indicat ion of shape The special set square shows angles of $100,150,25$ 응 and 45o that can be used in any combination.


Special set square for dimetric projection


Special set square for trimet ric project ion

Dimetric and Trimet ric drawings are usually drawn using special set squares and scales

True axonomet ric projection requires scaling of all the principle axes lengths. To simplify draft ing procedures it is usual to produce axonometric drawings as explained in the next section of work

## Pictorial Drawings

－Isometric
－Oblique
－Perspective

## Do they give a true picture？

When an edge or face is looked at froman angle，the true length is not seen by the eye．Look at the draving of the 80 mmedge illustrated on this page，and you vill see what is meant However，a great number of pictorial drawings are drawn with edges and faces shown at full length


As the vieving point moves away froma normal（right angles to）position，the length of the edge or face being viewed appears shorter．If pictorial drawings are to be made true to size，these shortened lengths should be used．In most cases this is not done as it would be too time consuming，hence，most pictorial dravings give a distorted viewby using full lengths instead of scaled lengths．

The difference bet ween：
－Isometric draving
Isometric projection


The difference bet ween an Isomet ric drawing（solid line）and an Isometric Projection（Dotted Line）．
Isomet ric drawings are easier and quicker to drawand are mostly used．Isometric projections are time consuming and difficult to draw，however they do give the correct size

You can see the difference bet ween an Isomet ric DRAWNG and an Isomet ric PRO ECTION．

The isomet ric draning makes the 20 mmcube look larger than an act ual 20 mmcube would look to the eye．To make the cube look right，isomet ric project ion would have to be used．The draving is the solid line，the projection is the dotted line．To drawthe projection，the 20 mm cube is tilted forward on one corner until all the lines appear equal in length to the eye．The cube，and any other shape，is calculated to be tilted through 35015＇for this to take place．

You can see the extent of the work to be completed in order to produce an isomet ric projection． A side viewdrawn at 35015＇has to be constructed first so that the correct heights can be projected across．This is time consuming，hence most of the isometric vievs made are isometric drawings，not isometric projections．

This means that when an isomet ric drawing is looked at we are seeing an oversize object．The proportion of oversize can be determined fromt he viens．

All isometric work to be undertaken in this module will utilise isometric drawing

## Freehand sketching

## Isometric sketching

Before att empting to drawany shape using instruments, do a freehand sketch. This uill assist with the act ual shape required and allowyou to check the vieving direction (normally shown on an orthogonal viewby an arrow).

## Example

A freehand sketch of exercise 1 lon the next page is shown belowto indicate how you should completethis work.


Note the use of an out line box

## Reviewquestions

1 What is the difference bet ween isomet ric, dimet ric and trimet ric drawings?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
2. What is the collect ive name given to this type of drawing in question 1
3. List the special equipment needed to drawdimetric and trimet ric drawings.
4. What is a disadvant age of isometric drawing over isometric projection.
5. What is an advant age of isometric drawing over isometric projection.

## Reviewexercises

Using drawing instruments, construct isometric drawings of the work fromthe sheets referred to below, each drawing to be viewed in the directions of the arrow(if indicated).

There areten (10) exercises for you to pract ice isometric drawing. The sheets to drawon have the references marked. Measure the actual dimensions of each orthogonal set of dranings if necessary, or use the $\mathbf{1 0 m m}$ grid lines
Refer sheets:

| $\square$ exercise 11 to 14 | page 10 |
| :--- | :--- |
| $\square$ exercise 15 | page 14 |
| $\square$ exercise 16 to 18 | page 15 |
| $\square$ exercise 19 and 110 | page 17 |



Exercise1－3

Exercise 1－2

